Back to Search
Start Over
A Bernstein theorem for affine maximal-type hypersurfaces.
- Source :
-
Comptes Rendus. Mathématique . Jan2019, Vol. 357 Issue 1, p66-73. 8p. - Publication Year :
- 2019
-
Abstract
- Abstract We obtain, in any dimension N and for a large range of values of θ , a Bernstein theorem for the fourth-order partial differential equation of affine maximal type u i j D i j w = 0 , w = [ det D 2 u ] − θ assuming the completeness of Calabi's metric. This contains the results of Li–Jia [A.M. Li, F. Jia, Ann. Glob. Anal. Geom. 23 (2003)] for affine maximal equations and of Zhou [B. Zhou, Calc. Var. Partial Differ. Equ. 43 (2012)] for Abreu's equation. In particular, we extend the result of Zhou from 2 ≤ N ≤ 4 to 2 ≤ N ≤ 5. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1631073X
- Volume :
- 357
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Comptes Rendus. Mathématique
- Publication Type :
- Academic Journal
- Accession number :
- 133871959
- Full Text :
- https://doi.org/10.1016/j.crma.2018.11.011