Back to Search
Start Over
A synthetic chalcone derivative, 2-hydroxy-3′,5,5′-trimethoxychalcone (DK-139), triggers reactive oxygen species-induced apoptosis independently of p53 in A549 lung cancer cells.
- Source :
-
Chemico-Biological Interactions . Jan2019, Vol. 298, p72-79. 8p. - Publication Year :
- 2019
-
Abstract
- Abstract 2-Hydroxy-3′,5,5′-trimethoxychalcone (named DK-139) is a synthetic chalcone derivative that has anti-inflammatory, anti-tumor, and endoplasmic reticulum-mediated apoptosis activities. However, the mode of action of DK-139 on reactive oxygen species (ROS)-induced apoptosis remains unknown. In this study, we found that DK-139 activated DNA damage responses, as was revealed by the accumulation of the tumor suppressor p53 and the phosphorylation of histone H2AX at Ser139 (called γ-H2AX), which are hallmarks of DNA damage responses. The occurrence of DK-139-induced DNA damage was confirmed through single-cell gel electrophoresis (comet tail assay). Interestingly, using p53-null HCT116 cells revealed that p53 was not involved in DK-139-induced apoptosis. Instead, we found that DK-139 increased the production of ROS, which led to the processing of caspase-2, BH3 interacting-domain death agonist (BID), caspase-9, and caspase-7. Pretreatment with the ROS scavenger N-acetyl cysteine reduced the frequency of DK-139-induced γ-H2AX formation, demonstrating that DK-139 triggered DNA damage through ROS production. In addition, NAC pretreatment prevented DK-139-induced processing of caspase-2, BID, caspase-9, caspase-7, and poly(ADP-ribose) polymerase. These results suggest that DK-139 triggers apoptosis through ROS-mediated DNA damage and activation of the caspase-2 cascade in A549 human lung cancer cells. Graphical abstract Image 1 Highlights • DK-139 is a synthetic trimethoxychalcone derivative. • DK-139 inhibits A549 non-small cell lung cancer cell growth. • DK-139 induces DNA damage. • DK-139 triggers ROS-induced apoptosis. • DK-139 may be used as an anticancer agent against non-small cell lung cancer cells. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00092797
- Volume :
- 298
- Database :
- Academic Search Index
- Journal :
- Chemico-Biological Interactions
- Publication Type :
- Academic Journal
- Accession number :
- 133765890
- Full Text :
- https://doi.org/10.1016/j.cbi.2018.11.003