Back to Search Start Over

Improvement in the Predicted Partitioning of Alcohol and Polyethylene Oxide Groups Between Water and Octanol (logP) in Molecular Dynamics Simulations.

Authors :
Warren, Dallas B.
McPhee, Emma
Birru, Woldeamanuel A.
Benameur, Hassan
Chalmers, David K.
Pouton, Colin W.
Source :
Journal of Pharmaceutical Sciences. Jan2019, Vol. 108 Issue 1, p214-222. 9p.
Publication Year :
2019

Abstract

Abstract Molecular dynamics simulations can be applied to explore the complex liquid phase behavior of lipid-based formulations and the gastrointestinal tract lumen. In order for the results from these simulations to be of value, the manner in which molecules interact with both aqueous and oil phases present needs to be as correct as possible. An existing molecular dynamics force field, GROMOS 53a6, was demonstrated to poorly reproduce the partitioning of straight-chain alcohol and short-chain polyethylene glycol (PEG) molecules between octanol and water phase (logP), with the molecules too hydrophobic. Force field parameters for Lennard-Jones interactions between CH2 and CH3 with water oxygen were adjusted to reproduce the experimental octanol logP, with all other Lennard-Jones and force field parameters left untouched. This parameter set, called 53a6 DBW , was subsequently used to recalculate straight-chain alcohol and short-chain PEG molecules, with significant improvement in the values obtained. Simulations of a nonionic surfactant in water, octaethylene glycol monocaprylate, were also performed to observe the aggregation behavior. 53a6 DBW demonstrated significant improvements in water interactions with the PEG chains, well hydrating the PEG groups, and allowing the formation of micelles. Further improvements and evaluation of the improved parameter set are ongoing. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223549
Volume :
108
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Pharmaceutical Sciences
Publication Type :
Academic Journal
Accession number :
133735887
Full Text :
https://doi.org/10.1016/j.xphs.2018.11.016