Back to Search Start Over

Deriving the priority weights from probabilistic linguistic preference relation with unknown probabilities.

Authors :
Song, Yongming
Source :
PLoS ONE. 12/10/2018, Vol. 13 Issue 12, p1-17. 17p.
Publication Year :
2018

Abstract

Generally, the probabilistic linguistic term set (PLTS) provides more accurate descriptive properties than the hesitant fuzzy linguistic term set does. The probabilistic linguistic preference relation (PLPR), which is applied to deal with complex decision-making problems, can be constructed for PLTSs. However, it is difficult for decision makers to provide the probabilities of occurrence for PLPR. To deal with this problem, we propose a definition of expected consistency for PLPR and establish a probability computing model to derive probabilities of occurrence in PLPR with priority weights for alternatives. A consistency-improving iterative algorithm is presented to examine whether or not the PLPR is at an acceptable consistency. Moreover, the consistency-improving iterative algorithm should obtain the satisfaction consistency level for the unacceptable consistency PLPR. Finally, a real-world employment-city selection is used to demonstrate the effectiveness of the proposed method of deriving priority weights from PLPR. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
13
Issue :
12
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
133471813
Full Text :
https://doi.org/10.1371/journal.pone.0208855