Back to Search Start Over

Seeing permeability from images: fast prediction with convolutional neural networks.

Authors :
Wu, Jinlong
Yin, Xiaolong
Xiao, Heng
Source :
Science Bulletin. Sep2018, Vol. 63 Issue 18, p1215-1222. 8p.
Publication Year :
2018

Abstract

Graphical abstract Abstract Fast prediction of permeability directly from images enabled by image recognition neural networks is a novel pore-scale modeling method that has a great potential. This article presents a framework that includes (1) generation of porous media samples, (2) computation of permeability via fluid dynamics simulations, (3) training of convolutional neural networks (CNN) with simulated data, and (4) validations against simulations. Comparison of machine learning results and the ground truths suggests excellent predictive performance across a wide range of porosities and pore geometries, especially for those with dilated pores. Owning to such heterogeneity, the permeability cannot be estimated using the conventional Kozeny–Carman approach. Computational time was reduced by several orders of magnitude compared to fluid dynamic simulations. We found that, by including physical parameters that are known to affect permeability into the neural network, the physics-informed CNN generated better results than regular CNN. However, improvements vary with implemented heterogeneity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20959273
Volume :
63
Issue :
18
Database :
Academic Search Index
Journal :
Science Bulletin
Publication Type :
Academic Journal
Accession number :
133424608
Full Text :
https://doi.org/10.1016/j.scib.2018.08.006