Back to Search Start Over

Facile synthesis of Co-N-rGO composites as an excellent electrocatalyst for oxygen reduction reaction.

Authors :
Zhai, Lin-Feng
Kong, Shi-Yu
Zhang, Huayang
Tian, Wenjie
Sun, Min
Sun, Hongqi
Wang, Shaobin
Source :
Chemical Engineering Science. Feb2019, Vol. 194, p45-53. 9p.
Publication Year :
2019

Abstract

Graphical abstract Highlights • A novel low-temperature hydrothermal method is developed to prepare Co-N-rGO. • Co-N-rGO demonstrates higher catalytic activity for ORR than pyrolyzed Co-N-rGO. • Co is coordinated with N which is doped into the rGO structure via covalent bond. • Co and N show synergetic effect in enhancing the ORR activity of rGO. • The active sites responsible for ORR are proposed to be CoN 2 /C and CoN 4 /C species. Abstract Cobalt and nitrogen co-doped reduced graphene oxide (Co-N-rGO) composites are prepared by a facile low-temperature hydrothermal method. Structure characterization reveals that cobalt and nitrogen are co-ordinately attached to the rGO sheets with the formation of covalent C-N and Co-O-C linkages. Cyclic voltammetry and linear sweep voltammetry show that the Co-N-rGO composite possesses higher electrocatalytic activity and four-electron selectivity for oxygen reduction reaction (ORR) as compared to the rGO, Co-rGO and N-rGO. In addition, the Co-N-rGO composite presents excellent stability and durability in alkaline medium comparable to commercial Pt/C. The edge plane CoN 2 /C, CoN 4 /C, and basal plane macrocyclic CoN 4 /C species within the Co-N-rGO structure are proposed to be the active sites performing catalysis in the ORR. The strong covalent linkages between the cobalt/nitrogen and rGO not only enable potent synergy of cobalt, nitrogen and rGO in catalysis, but also ensure structure stability of the composite. Due to the superior ORR activity of Co-N-rGO, high-temperature heat treatment is not able to improve its activity any more. The low-temperature hydrothermal method is anticipated to be used as a low-cost and facile preparation approach for ORR catalysts, and the superb ORR performance of Co-N-rGO endow it with great application potential in fuel cells, metal-air batteries and other ORR-related electrochemical industries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00092509
Volume :
194
Database :
Academic Search Index
Journal :
Chemical Engineering Science
Publication Type :
Academic Journal
Accession number :
133366802
Full Text :
https://doi.org/10.1016/j.ces.2018.05.020