Back to Search
Start Over
Transition state analogue imprinted polymers as artificial amidases for amino acid p-nitroanilides: morphological effects of polymer network on catalytic efficiency.
- Source :
-
Artificial Cells, Nanomedicine & Biotechnology . Dec2018, Vol. 46 Issue 8, p1830-1837. 8p. - Publication Year :
- 2018
-
Abstract
- The morphology of the polymer network - porous/less porous - plays predominant role in the amidase activities of the polymer catalysts in the hydrolytic reactions of amino acid p-nitroanilides. Polymers with the imprints of stable phosphonate analogue of the intermediate of hydrolytic reactions were synthesized as enzyme mimics. Molecular imprinting was carried out in thermodynamically stable porogen dimethyl sulphoxide and unstable porogen chloroform, to investigate the morphological effects of polymers on catalytic amidolysis. It was found that the medium of polymerization has vital influence in the amidase activities of the enzyme mimics. The morphological studies of the polymer catalysts were carried out by scanning electron microscopy and Bruner-Emmett-Teller analysis. The morphology of the polymer catalysts and their amidase activities are found to be dependent on the composition of reaction medium. The polymer catalyst prepared in dimethyl sulphoxide is observed to be efficient in 1:9 acetonitrile (ACN)-Tris HCl buffer and that prepared in chloroform is noticed to be stereo specifically and shape-selectively effective in 9:1 ACN-Tris HCl buffer. The solvent memory effect in catalytic amidolysis was investigated using the polymer prepared in acetonitrile. [ABSTRACT FROM AUTHOR]
- Subjects :
- *AMINO acids
*TRANSITION state theory (Chemistry)
Subjects
Details
- Language :
- English
- ISSN :
- 21691401
- Volume :
- 46
- Issue :
- 8
- Database :
- Academic Search Index
- Journal :
- Artificial Cells, Nanomedicine & Biotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 133104112
- Full Text :
- https://doi.org/10.1080/21691401.2017.1394871