Back to Search Start Over

Partially Related Multi-Task Clustering.

Authors :
Zhang, Xiaotong
Zhang, Xianchao
Liu, Han
Liu, Xinyue
Source :
IEEE Transactions on Knowledge & Data Engineering. Dec2018, Vol. 30 Issue 12, p2367-2380. 14p.
Publication Year :
2018

Abstract

Multi-task clustering improves the clustering performance of each task by transferring knowledge across related tasks. Most existing multi-task clustering methods are based on the ideal assumption that the tasks are completely related. However, in real applications, the tasks are usually partially related. In these cases, brute-force transfer may cause negative effect which degrades the clustering performance. In this paper, we propose two multi-task clustering methods for partially related tasks: the self-adapted multi-task clustering (SAMTC) method and the manifold regularized coding multi-task clustering (MRCMTC) method, which can automatically identify and transfer related instances among the tasks, thus avoiding negative transfer. Both SAMTC and MRCMTC construct the similarity matrix for each target task by exploiting useful information from the source tasks through related instances transfer, and adopt spectral clustering to get the final clustering results. But, they learn the related instances from the source tasks in different ways. Experimental results on real data sets show the superiorities of the proposed algorithms over traditional single-task clustering methods and existing multi-task clustering methods on both completely and partially related tasks. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10414347
Volume :
30
Issue :
12
Database :
Academic Search Index
Journal :
IEEE Transactions on Knowledge & Data Engineering
Publication Type :
Academic Journal
Accession number :
132967345
Full Text :
https://doi.org/10.1109/TKDE.2018.2818705