Back to Search Start Over

BOLD mapping of human epileptic spikes recorded during simultaneous intracranial EEG-fMRI: The impact of automated spike classification.

Authors :
Sharma, Niraj K.
Pedreira, Carlos
Chaudhary, Umair J.
Centeno, Maria
Carmichael, David W.
Yadee, Tinonkorn
Murta, Teresa
Diehl, Beate
Lemieux, Louis
Source :
NeuroImage. Jan2019, Vol. 184, p981-992. 12p.
Publication Year :
2019

Abstract

Abstract Objectives Simultaneous intracranial EEG and functional MRI (icEEG-fMRI) can be used to map the haemodynamic (BOLD) changes associated with the generation of IEDs. Unlike scalp EEG-fMRI, in most patients who undergo icEEG-fMRI, IEDs recorded intracranially are numerous and show variability in terms of field amplitude and morphology. Therefore, visual marking can be highly subjective and time consuming. In this study, we applied an automated spike classification algorithm, Wave_clus (WC), to IEDs marked visually on icEEG data acquired during simultaneous fMRI acquisition. The motivation of this work is to determine whether using a potentially more consistent and unbiased automated approach can produce more biologically meaningful BOLD patterns compared to the BOLD patterns obtained based on the conventional, visual classification. Methods We analysed simultaneous icEEG-fMRI data from eight patients with severe drug resistant epilepsy, and who subsequently underwent resective surgery that resulted in a good outcome: confirmed epileptogenic zone (EZ). For each patient two fMRI analyses were performed: one based on the conventional visual IED classification and the other based on the automated classification. We used the concordance of the IED-related BOLD maps with the confirmed EZ as an indication of their biological meaning, which we compared for the automated and visual classifications for all IED originating in the EZ. Results Across the group, the visual and automated classifications resulted in 32 and 24 EZ IED classes respectively, for which 75% vs 83% of the corresponding BOLD maps were concordant. At the single-subject level, the BOLD maps for the automated approach had greater concordance in four patients, and less concordance in one patient, compared to those obtained using the conventional visual classification, and equal concordance for three remaining patients. These differences did not reach statistical significance. Conclusion We found automated IED classification on icEEG data recorded during fMRI to be feasible and to result in IED-related BOLD maps that may contain similar or greater biological meaning compared to the conventional approach in the majority of the cases studied. We anticipate that this approach will help to gain significant new insights into the brain networks associated with IEDs and in relation to postsurgical outcome. Highlights • IcEEG-fMRI provides a unique insight into the generators of IEDs. • Visual IED marking can be highly subjective and time consuming. • An automated spike classification algorithm, Wave_clus , can minimise subjectivity. • The BOLD maps associated with IEDs classified using Wave_clus may commonly have equal or greater biological meaning than those obtained using conventional, visual classification. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10538119
Volume :
184
Database :
Academic Search Index
Journal :
NeuroImage
Publication Type :
Academic Journal
Accession number :
132871055
Full Text :
https://doi.org/10.1016/j.neuroimage.2018.09.065