Back to Search Start Over

A novel antibacterial acellular porcine dermal matrix cross-linked with oxidized chitosan oligosaccharide and modified by in situ synthesis of silver nanoparticles for wound healing applications.

Authors :
Chen, Yining
Dan, Nianhua
Dan, Weihua
Liu, Xinhua
Cong, Liangliang
Source :
Materials Science & Engineering: C. Jan2019, Vol. 94, p1020-1036. 17p.
Publication Year :
2019

Abstract

Abstract Not only are the physicochemical properties and biocompatibility of biomaterials important considerations, but also their antibacterial properties. In this study, a novel chemically-cross-linked antibacterial porcine acellular dermal matrix (pADM) scaffold was fabricated according to a two-step method. A naturally-derived oxidized chitosan oligosaccharide (OCOS) was used to cross-linked pADM (termed OCOS-pADM) to improve its physicochemical properties. Residual aldehyde groups within the OCOS-pADM were used in a redox reaction with Ag ions to produce Ag nanoparticles (AgNPs) in situ. As the AgNPs were tightly adhered onto the scaffold fibrils (termed OCOS-AgNPs-pADM), this effectively functionalized scaffold with antibacterial properties. The generated AgNPs were characterized by UV–Vis diffuse reflectance spectroscopy, XPS and SEM. The results of DSC, TG and enzymatic degradation demonstrated that OCOS-AgNPs-pADM possessed improved thermal stability and resistance to enzymatic degradation compared with pADM scaffolds. The kinetic experiment of the release of silver showed that silver was released in a controllable way. After introducing AgNPs into scaffolds, the OCOS-AgNPs-pADM possessed wide-spectrum antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, MTT assay and CLSM showed that the scaffolds had good biocompatibility. Pieces of OCOS-AgNPs-pADM were implanted into Sprague-Dawley rats to characterize their ability to repair full-thickness skin wounds. And results showed that the OCOS-AgNPs-pADM could accelerate the wound healing process. Overall, this work contributes new insight into the chemical cross-linking and functionalization of pADM scaffolds. In addition, as novel antibacterial scaffolds, OCOS-AgNPs-pADMs have the potential for development as wound dressing materials. Highlights • A naturally-derived oxidized Chitosan Oligosaccharide was used to cross-link porcine acellular dermal matrix (OCOS-pADM). • AgNPs were produced in-situ according to a green synthesis method using the residual aldehyde groups within OCOS-pADM. • A novel chemically-cross-linked antibacterial pADM scaffold (OCOS-AgNPs-pADM) was fabricated according to a two-step method. • The physicochemical properties and antibacterial property of OCOS-AgNPs-pADM were improved compared with native pADM. • The evaluation of in vitro biocompatibility indicated that OCOS-AgNPs-pADM had good biocompatibility. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09284931
Volume :
94
Database :
Academic Search Index
Journal :
Materials Science & Engineering: C
Publication Type :
Academic Journal
Accession number :
132868967
Full Text :
https://doi.org/10.1016/j.msec.2018.10.036