Back to Search Start Over

Mutant myocilin impacts sarcomere ultrastructure in mouse gastrocnemius muscle.

Authors :
Lynch, Jeffrey M.
Dolman, Andrew J.
Guo, Chenying
Dolan, Katie
Xiang, Chuanxi
Reda, Samir
Li, Bing
Prasanna, Ganesh
Source :
PLoS ONE. 10/5/2018, Vol. 13 Issue 11, p1-25. 25p.
Publication Year :
2018

Abstract

Myocilin (MYOC) is the gene with mutations most common in glaucoma. In the eye, MYOC is in trabecular meshwork, ciliary body, and retina. Other tissues with high MYOC transcript levels are skeletal muscle and heart. To date, the function of wild-type MYOC remains unknown and how mutant MYOC causes high intraocular pressure and glaucoma is ambiguous. By investigating mutant MYOC in a non-ocular tissue we hoped to obtain novel insight into mutant MYOC pathology. For this study, we utilized a transgenic mouse expressing human mutant MYOC Y437H protein and we examined its skeletal (gastrocnemius) muscle phenotype. Electron micrographs showed that sarcomeres in the skeletal muscle of mutant CMV-MYOC-Y437H mice had multiple M-bands. Western blots of soluble muscle lysates from transgenics indicated a decrease in two M-band proteins, myomesin 1 (MYOM1) and muscle creatine kinase (CKM). Immunoprecipitation identified CKM as a MYOC binding partner. Our results suggest that binding of mutant MYOC to CKM is changing sarcomere ultrastructure and this may adversely impact muscle function. We speculate that a person carrying the mutant MYOC mutation will likely have a glaucoma phenotype and may also have undiagnosed muscle ailments or vice versa, both of which will have to be monitored and treated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
13
Issue :
11
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
132840173
Full Text :
https://doi.org/10.1371/journal.pone.0206801