Back to Search Start Over

Irradiation by γ-rays reduces the level of H3S10 phosphorylation and weakens the G2 phase-dependent interaction between H3S10 phosphorylation and γH2AX.

Authors :
Bártová, Eva
Lochmanová, Gabriela
Legartová, Soňa
Suchánková, Jana
Fedr, Radek
Krejčí, Jana
Zdráhal, Zbyněk
Source :
Biochimie. Nov2018, Vol. 154, p86-98. 13p.
Publication Year :
2018

Abstract

Abstract Histone posttranslational modifications regulate diverse nuclear functions, including DNA repair. Here, we use mass spectrometry, western blotting, immunohistochemistry and advanced confocal microscopy in order to show radiation-specific changes in the histone signature. We studied wild-type mouse embryonic stem cells (mESCs) and mESCs with a depletion of histone deacetylase 1 (HDAC1), which plays a role in DNA repair. Irradiation by γ-rays increased the S139 phosphorylation of histone H2AX but reduced the level of the H3K9-R17 peptide, which contains S10 phosphorylation (H3S10ph). On an individual cellular level, H3S10ph was low in highly γH2AX-positive UV laser-induced DNA lesions, and this nuclear distribution pattern was not changed by HDAC1 depletion. Despite this fact, spontaneous γH2AX-positive DNA lesions colocalized with large H3S10ph-positive nuclear bodies that appear in the G2 phase of the cell cycle. Similarly, by FLIM-FRET analysis, we observed an interaction between H3S10ph and γH2AX in the G2 phase. However, this interaction was reduced when cells were exposed to γ-rays. A mutual link between H3S10ph and γH2AX was not observed in the G1 phase of the cell cycle. Together, our data show that despite the fact that H3S10ph is not directly involved in DNA repair, a decrease in H3S10 phosphorylation and weakened interaction between H3S10ph and γH2AX is a result of radiation-induced damage of the genome. In this case, γ-irradiation also decreased the number of cells in the G1 phase, characterized by no interaction between H3S10ph and γH2AX. Graphical abstract (A) Irradiation by γ-rays (red line) reduced H3S10ph levels. However, (B) H3S10ph was intact in the γH2AX-positive microirradiated genomic region. (C) Despite the fact that H3S10ph- and γH2AX-positive foci colocalized (interacted) in the G2 phase of the cell cycle, radiation-induced H3S10ph dephosphorylation was not directly linked to DNA repair processes, but instead (D) H3S10ph dephosphorylation was caused by a radiation-induced cell number decrease in the G1 phase. G1 phase was characterized by no interaction between H3S10ph and γH2AX (mentioned in panel C). Together, H3S10ph contributes to the function of γH2AX in DNA repair taking place in G2 phase. Image 1 Highlights • Irradiation by γ-rays increased γH2AX but reduced the level of H3S10ph. • A mutual link between H3S10ph and γH2AX was not observed in the G1 phase of the cell cycle. • An interaction between γH2AX and H3S10ph was found in the G2 phase. • H3S10ph contributes to the function of γH2AX in homologous recombination repair. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03009084
Volume :
154
Database :
Academic Search Index
Journal :
Biochimie
Publication Type :
Academic Journal
Accession number :
132549117
Full Text :
https://doi.org/10.1016/j.biochi.2018.07.029