Back to Search
Start Over
An integral functional equation on groups under two measures.
- Source :
-
Proyecciones - Journal of Mathematics . Sep2018, Vol. 37 Issue 3, p565-581. 17p. - Publication Year :
- 2018
-
Abstract
- Let G be a locally compact Hausdorff group, let σ be a continuous involutive automorphism on G, and let μ, ν be regular, compactly supported, complex-valued Borel measures on G. We find the continuous solutions f : G → C of the functional equation ∫G f (σ(y)xt)dμ(t) + ∫G f (xyt)dν(t) = f (x)f (y), x,y ∈ G, in terms of continuous characters of G. This equation provides a common generalization of many functional equations (d'Alembert's, Cauchy's, Gajda's, Kannappan's, Stetkær's, Van Vleck's equations...). So, a large class of functional equations will be solved. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 07160917
- Volume :
- 37
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Proyecciones - Journal of Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 132347852
- Full Text :
- https://doi.org/10.4067/S0716-09172018000300565