Back to Search Start Over

An integral functional equation on groups under two measures.

Authors :
Fadli, B.
Zeglami, D.
Kabbaj, S.
Source :
Proyecciones - Journal of Mathematics. Sep2018, Vol. 37 Issue 3, p565-581. 17p.
Publication Year :
2018

Abstract

Let G be a locally compact Hausdorff group, let σ be a continuous involutive automorphism on G, and let μ, ν be regular, compactly supported, complex-valued Borel measures on G. We find the continuous solutions f : G → C of the functional equation ∫G f (σ(y)xt)dμ(t) + ∫G f (xyt)dν(t) = f (x)f (y), x,y ∈ G, in terms of continuous characters of G. This equation provides a common generalization of many functional equations (d'Alembert's, Cauchy's, Gajda's, Kannappan's, Stetkær's, Van Vleck's equations...). So, a large class of functional equations will be solved. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07160917
Volume :
37
Issue :
3
Database :
Academic Search Index
Journal :
Proyecciones - Journal of Mathematics
Publication Type :
Academic Journal
Accession number :
132347852
Full Text :
https://doi.org/10.4067/S0716-09172018000300565