Back to Search Start Over

An adaptive deep Q-learning strategy for handwritten digit recognition.

Authors :
Qiao, Junfei
Wang, Gongming
Li, Wenjing
Chen, Min
Source :
Neural Networks. Nov2018, Vol. 107, p61-71. 11p.
Publication Year :
2018

Abstract

Abstract Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08936080
Volume :
107
Database :
Academic Search Index
Journal :
Neural Networks
Publication Type :
Academic Journal
Accession number :
132290769
Full Text :
https://doi.org/10.1016/j.neunet.2018.02.010