Back to Search Start Over

Optimizing long chain-polyunsaturated fatty acid synthesis in salmonids by balancing dietary inputs.

Authors :
Colombo, Stefanie M.
Parrish, Christopher C.
Wijekoon, Manju P. A.
Source :
PLoS ONE. 10/10/2018, Vol. 13 Issue 10, p1-17. 17p.
Publication Year :
2018

Abstract

The increasing use of terrestrial plant lipids to replace of fish oil in commercial aquafeeds requires understanding synthesis and storage of long chain-polyunsaturated fatty acids (LC-PUFA) in farmed fish. Manipulation of dietary fatty acids may maximize tissue storage of LC-PUFA, through increased production and selective utilization. A data synthesis study was conducted to estimate optimal levels of fatty acids that may maximize the production and storage of LC-PUFA in the edible portion of salmonids. Data were compiled from four studies with Atlantic salmon, rainbow trout, and steelhead trout (total n = 180) which were fed diets containing different terrestrial-based oils to replace fish oil. LC-PUFA (%) were linearly correlated between diet and muscle tissue (p < 0.001; r2 > 44%), indicating proportional storage after consumption. The slope, or retention rate, was highest for docosahexaenoic acid (DHA) at 1.23, indicating that an additional 23% of DHA was stored in the muscle. Dietary saturated fatty acids were positively related to DHA stored in the muscle (p < 0.001; r2 = 22%), which may involve membrane structural requirements, as well as selective catabolism. DHA was found to be optimally stored with a dietary n-3: n-6 ratio of 1.03: 1. These new results provide a baseline of optimal dietary ratios that can be tested experimentally to determine the efficacy of balancing dietary fatty acids for maximum LC-PUFA storage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
13
Issue :
10
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
132276854
Full Text :
https://doi.org/10.1371/journal.pone.0205347