Back to Search Start Over

Joint Amplitude and Frequency Demodulation Analysis Based on Variational Mode Decomposition for Multifault Diagnosis of a Multistage Reducer.

Authors :
Li, Feng
Pang, Xinyu
Yang, Zhaojian
Source :
Shock & Vibration. 10/9/2018, p1-19. 19p.
Publication Year :
2018

Abstract

Multistage reducer vibration signals have complicated spectral structures owing to the amplitude and frequency modulations of gear damage-induced vibrations and the multiplicative amplitude modulation effect caused by time-varying vibration transfer paths (in the case of local gear damage) when the multistage reducer contains both planetary and spur gears. Moreover, the difference between the vibration energies of these gears increases the difficulty of fault feature extraction when multiple failures occur in the reducer. As the meshing frequency of each gear group often varies significantly, variational mode decomposition can be performed to decompose the vibration signal according to frequency, enabling separation of the vibration signals of the spur and planetary gears. The common fault features of these gears can be extracted from the spectrum of the amplitude demodulation envelope. To verify the effectiveness of this method, we first analyzed a simulation signal, and then utilized the experimental signals from a laboratory multistage reducer for verification. In the multistage reducer simulation, we considered the amplitude and frequency modulation of the gear damage and transfer paths. In the experimental verification, we processed local faults (broken teeth) and uniform faults (uniform wear) on the sun gear and the spur gear of the planetary gear separately. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10709622
Database :
Academic Search Index
Journal :
Shock & Vibration
Publication Type :
Academic Journal
Accession number :
132263704
Full Text :
https://doi.org/10.1155/2018/9869561