Back to Search Start Over

Preparation of novel marine antifouling polyurethane coating materials.

Authors :
Ou, Baoli
Chen, Meilong
Guo, Yuanjun
Kang, Yonghai
Guo, Yan
Zhang, Shanggao
Yan, Jianhui
Liu, Qingquan
Li, Duxin
Source :
Polymer Bulletin. Nov2018, Vol. 75 Issue 11, p5143-5162. 20p.
Publication Year :
2018

Abstract

Polyurethane coating materials with different compositions of low surface energy polydimethylsiloxane and degradable poly(L-lactic acid) were synthesized by three major steps. Initially, the hydroxylation-terminated poly(L-lactide)-functionalized graphene (G-g-PLLA) was prepared by ring-opening polymerization of L-lactic acid using the phenol-functionalized graphene (G-f-OH), which was prepared by 1,3-dipolar cycloaddition reaction of graphene and 3,4-dihydroxybenzaldehyde when N-methylglycine and tin octoate were used as initiator and catalyst, respectively. Subsequently, isocyanate-terminated polyurethane prepolymer with polydimethylsiloxane was obtained by condensation polymerization of polydimethylsiloxane and isocyanate-terminated polyurethane prepolymer that was obtained by the condensation polymerization of 4,4′-diphenylmethane diisocyanate and 1,4-butane diol. Finally, the novel polyurethane coating materials were prepared by the condensation polymerization of G-g-PLLA and isocyanate-terminated polyurethane prepolymer with polydimethylsiloxane. These synthesized materials were carefully analyzed with Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectra (1H NMR), field-emission scanning electron microscopy (SEM), and high-resolution transmission (TEM). In addition, the water contact angles were measured. It was found that the surface free energy of the polyurethane coating materials decreased from 52.19 to 11.74 N/m2 with the increase of polydimethylsiloxane content from 0 to 20% and the water contact angle of the polyurethane coating materials increased from 71° to 108°. Moreover, the mechanical property was investigated. The studies also demonstrated that functionalized polyurethane was able to hydrolyze in seawater and the hydrolysis rate decreased as the PDMS content increased. At the same time, simulative ocean hanging plate experiment confirmed that the novel polyurethane coating materials exhibited a good antifouling performance, which indicated that the functionalized polyurethane has a potentiality in marine antifouling coating application. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01700839
Volume :
75
Issue :
11
Database :
Academic Search Index
Journal :
Polymer Bulletin
Publication Type :
Academic Journal
Accession number :
131705294
Full Text :
https://doi.org/10.1007/s00289-018-2302-5