Back to Search
Start Over
Weighted Hardy inequalities and Ornstein–Uhlenbeck type operators perturbed by multipolar inverse square potentials.
- Source :
-
Journal of Mathematical Analysis & Applications . Jul2018, Vol. 463 Issue 2, p895-909. 15p. - Publication Year :
- 2018
-
Abstract
- Abstract In this paper our main results are the multipolar weighted Hardy inequality c ∑ i = 1 n ∫ R N φ 2 | x − a i | 2 d μ ≤ ∫ R N | ∇ φ | 2 d μ + K ∫ R N φ 2 d μ , c ≤ c o , where the functions φ belong to a weighted Sobolev space H μ 1 , and the proof of the optimality of the constant c o = c o (N) : = (N − 2 2) 2. The Gaussian probability measure dμ is the unique invariant measure for Ornstein–Uhlenbeck type operators. This estimate allows us to get necessary and sufficient conditions for the existence of positive solutions to a parabolic problem corresponding to the Kolmogorov operators defined on smooth functions and perturbed by a multipolar inverse square potential L u + V u = (Δ u + ∇ μ μ ⋅ ∇ u) + ∑ i = 1 n c | x − a i | 2 u , x ∈ R N , c > 0 , a 1 , … , a n ∈ R N. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0022247X
- Volume :
- 463
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Journal of Mathematical Analysis & Applications
- Publication Type :
- Academic Journal
- Accession number :
- 131633179
- Full Text :
- https://doi.org/10.1016/j.jmaa.2018.03.059