Back to Search Start Over

Mobility of symmetric block-and-hole polyhedra.

Authors :
Guest, Simon D.
Fowler, Patrick W.
Schulze, Bernd
Source :
International Journal of Solids & Structures. Oct2018, Vol. 150, p40-51. 12p.
Publication Year :
2018

Abstract

Block-and-hole polyhedra can be derived from a bar-joint triangulation of a polyhedron by a stepwise construction: select a set of non-overlapping disks defined by edge-cycles of the triangulation of length at least 4; then modify the interior of each disk by an addition or deletion operation on vertices and edges so that it becomes either a rigid block or a hole. The construction has a body-hinge analogue. Models of many classical objects such as the Sarrus linkage can be modelled by block-and-hole polyhedra. Symmetry extensions of counting rules for mobility (the balance of mechanisms and states of self-stress) are obtained for the bar-joint and body-hinge models. The extended rules detect mechanisms in many cases where pure counting would predict an isostatic framework. Relations between structures where blocks and holes are swapped have a simple form. Examples illustrate the finer classification of isostatic and near-isostatic block-and-hole polyhedra achievable by using symmetry. The present approach also explains a puzzle in standard models of mobility. In the bar-joint model, a fully triangulated polyhedron is isostatic, but in a body-hinge version it is heavily overconstrained. When the bodies are panels with hinge lines intersecting at vertices, the overconstraints can be explained in local mechanical terms, with a direct symmetry description. A generalisation of the symmetry formula explains the extra states of self-stress in panel-hinge models of block-and-hole polyhedra. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00207683
Volume :
150
Database :
Academic Search Index
Journal :
International Journal of Solids & Structures
Publication Type :
Academic Journal
Accession number :
131430171
Full Text :
https://doi.org/10.1016/j.ijsolstr.2018.05.029