Back to Search Start Over

Vascular endothelial growth factor over-expressed mesenchymal stem cells-conditioned media ameliorate palmitate-induced diabetic endothelial dysfunction through PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathway.

Authors :
Xu, Tianwei
Lv, Zhengbing
Chen, Qiuhua
Guo, Min
Wang, Xufang
Huang, Fengjie
Source :
Biomedicine & Pharmacotherapy. Oct2018, Vol. 106, p491-498. 8p.
Publication Year :
2018

Abstract

In the pathogenesis of diabetes mellitus (DM), islet microvasculares are severely damaged due to glucolipotoxicity and other reasons. Vascular endothelial growth factor (VEGF) is an indispensable and specific angiogenic factor in the pathogenesis and treatment of diabetic islet microvascular disease. Mesenchymal stem cells (MSCs) are regarded as a promising treatment of diabetes because of their immunosuppressive effect and multipotential differentiation potency. In this study, we tested whether MSCs over-expressing VEGF conditioned medium (MSC-VEGF-CM) could ameliorate pancreatic islet endothelial cells (MS-1) dysfunction induced by a common diabetic inducer palmitate (PA). We found that cell survival and migration were restrained by PA and partly repaired by the pro-protected of MSC-VEGF-CM. Meanwhile, PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathways were also up-regulated. Though apoptosis-related proteins, caspase-3 and caspase-9, had no significantly suppressed between MSC-VEGF-CM and MSC-CM alone, the expression levels of vascular surface factors such as CD31, VE-cadherin, occludin and ICAM-1, were remarkably up-regulated by the pro-protected of MSC-VEGF-CM. Our data suggested that MSC-VEGF-CM had therapeutic effect on the PA-induced dysfunction through the re-activation of PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathways. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07533322
Volume :
106
Database :
Academic Search Index
Journal :
Biomedicine & Pharmacotherapy
Publication Type :
Academic Journal
Accession number :
131403337
Full Text :
https://doi.org/10.1016/j.biopha.2018.06.129