Back to Search Start Over

Effect of oligomer length on vibrational coupling and energy relaxation in double-stranded DNA.

Authors :
Hithell, Gordon
Donaldson, Paul M.
Greetham, Gregory M.
Towrie, Michael
Parker, Anthony W.
Burley, Glenn A.
Hunt, Neil T.
Source :
Chemical Physics. Aug2018, Vol. 512, p154-164. 11p.
Publication Year :
2018

Abstract

The effect of oligomer length on the vibrational mode coupling and energy relaxation mechanisms of AT-rich DNA oligomers in double- and single-stranded conformations has been investigated using two-dimensional infrared spectroscopy. Vibrational coupling of modes of the DNA bases to the symmetric stretching vibration of the backbone phosphate group was observed for oligomers long enough to form duplex-DNA structures. The coupling was lost upon melting of the duplex. No significant effect of oligomer length or DNA secondary structure was found on either the timescale for vibrational relaxation of the base modes or the mechanism, which was consistent with a cascade process from base modes to intermediate modes, some of which are located on the deoxyribose group, and subsequently to the phosphate backbone. The study shows that vibrational coupling between base and backbone requires formation of the double-helix structure while vibrational energy management is an inherent property of the nucleotide. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03010104
Volume :
512
Database :
Academic Search Index
Journal :
Chemical Physics
Publication Type :
Academic Journal
Accession number :
131293683
Full Text :
https://doi.org/10.1016/j.chemphys.2017.12.010