Back to Search Start Over

Improving Traffic State Prediction Model for Variable Speed Limit Control by Introducing Stochastic Supply and Demand.

Authors :
Bie, Yuwei
Seraj, Mudasser
Zhang, Can
Qiu, Tony Z.
Source :
Journal of Advanced Transportation. 8/5/2018, p1-12. 12p.
Publication Year :
2018

Abstract

Variable speed limit (VSL) is becoming recognized as an effective way to improve traffic throughput and road safety. In particular, methods based on traffic state prediction exhibit promising potential to prevent future traffic congestion and collisions. However, field observations indicate that the traffic state prediction model results in nonnegligible error that impacts the next step decision making of VSL. Thus, this paper investigates how to eliminate this prediction error within a VSL environment. In this study, the traffic state prediction model is a second-order traffic flow model named METANET, while the VSL control is model predictive control (MPC) based, and the VSL decision is discrete optimized choice. A simplified version of the switching mode stochastic cell transmission model (SCTM) is integrated with the METANET model to eliminate the prediction error. The performance of the proposed method is assessed using field data from a VSL pilot test in Edmonton, Canada, and is compared with the prediction results of the baseline METANET model during the road test. The results show that during the most congested period the proposed SCTM-METANET model significantly improves the prediction accuracy of regular METANET model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01976729
Database :
Academic Search Index
Journal :
Journal of Advanced Transportation
Publication Type :
Academic Journal
Accession number :
131083484
Full Text :
https://doi.org/10.1155/2018/7959815