Back to Search
Start Over
Zero mass case for a fractional Berestycki–Lions-type problem.
- Source :
-
Advances in Nonlinear Analysis . Aug2018, Vol. 7 Issue 3, p365-374. 10p. - Publication Year :
- 2018
-
Abstract
- In this work we study the following fractional scalar field equation: { ( - Δ ) s u = g ′ ( u ) in ℝ N , u > 0 , <graphic></graphic> \left\{\begin{aligned} \displaystyle(-\Delta)^{s}u&\displaystyle=g^{\prime}(u)% \quad\mbox{in }\mathbb{R}^{N},\\ \displaystyle u&\displaystyle>0,\end{aligned}\right. where N ≥ 2 {N\geq 2} , s ∈ ( 0 , 1 ) {s\in(0,1)} , ( - Δ ) s {(-\Delta)^{s}} is the fractional Laplacian and the nonlinearity g ∈ C 2 ( ℝ ) {g\in C^{2}(\mathbb{R})} is such that g ′′ ( 0 ) = 0 {g^{\prime\prime}(0)=0}. By using variational methods, we prove the existence of a positive solution which is spherically symmetric and decreasing in r = | x | {r=|x|}. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 21919496
- Volume :
- 7
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Advances in Nonlinear Analysis
- Publication Type :
- Academic Journal
- Accession number :
- 131059902
- Full Text :
- https://doi.org/10.1515/anona-2016-0153