Back to Search
Start Over
Improved adaptive notch filter-based active damping method for shunt active power filter with LCL-filter.
- Source :
-
Electrical Engineering . Sep2018, Vol. 100 Issue 3, p2037-2049. 13p. - Publication Year :
- 2018
-
Abstract
- The LCL-filter has been recently used with grid-connected converters to mitigate switching ripple harmonics. The LCL-filter presents a better attenuation performance for switching ripple harmonics in comparison with L- and LC-type filters. However, the application of LCL-filter has two basic constraints on the circuit design and the resonance problem. These constraints can be effortlessly overcome for grid-connected converters which operate on the utility fundamental frequency. On the other hand, these constraints become a challenging issue when the LCL-filter is used with shunt active power filter (SAPF) because of the wide operation frequency bandwidth of SAPF. This wide operation bandwidth of SAPF causes a narrow bandwidth for the selection of LCL-filter cutoff frequency and the resonance damping control. In this paper, the application constraints of LCL-filter are discussed and the LCL-filter design is provided for SAPF. In addition, an adaptive notch filter-based single-loop active damping method is developed considering the wide operation bandwidth of SAPF. The proposed method consists of a grid impedance estimation algorithm in order to update notch filter parameters adaptively against grid impedance variations. By the help of the single-loop active damping strategy, the proposed controller does not require any additional sensor for the current measurement of LCL-filter capacitor to damp resonance currents. The stability analysis of proposed controller is performed through pole-zero maps. The proposed method is tested, and its performance is verified with comprehensive case studies of a 400-V 80-kVA SAPF simulation model through MATLAB/Simulink. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09487921
- Volume :
- 100
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Electrical Engineering
- Publication Type :
- Academic Journal
- Accession number :
- 130993411
- Full Text :
- https://doi.org/10.1007/s00202-018-0685-9