Back to Search Start Over

Probing long-range ordering in nickel-base alloys with proton irradiation.

Authors :
Song, Miao
Yang, Ying
Wang, Mi
Kuang, Wenjun
Lear, Calvin R.
Was, Gary S.
Source :
Acta Materialia. Sep2018, Vol. 156, p446-462. 17p.
Publication Year :
2018

Abstract

Twelve commercial-grade austenitic alloys based on the Ni-Cr-Mo-Fe quaternary system were irradiated using 2 MeV protons at 360 °C to a damage level of 2.5 displacements per atom (dpa). Long-range ordered (Pt 2 Mo-type) precipitation under proton irradiation was observed, for the first time, in alloys C22, 625, 625P, 625D, 725, and 690. No relevant short-range ordering was observed. These irradiation-enhanced long-range ordered precipitates are coherent with the matrix despite their irregular shape. Of the potential influences on long-range ordering (Ni:Cr, and Ni:(Cr + Mo) ratios, Mo, and iron concentration), Fe content was the strongest by far. The volume fraction of LRO decreases with increasing Fe content by virtue of its role as a stabilizer of the disordered FCC phase, thus reducing the energy savings from ordering. The observed effects of Fe on long-range ordering show qualitative agreement with predictions from thermodynamic modeling. Although solid state diffusion kinetics dominate long-range ordering under purely thermal conditions, ordering under irradiation here (∼ 2.5dpa) is controlled by the thermodynamic driving force. Proton irradiation thus offers a unique approach for studying the low temperature phase transformation in a thermodynamically favored, but kinetically constrained condition. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13596454
Volume :
156
Database :
Academic Search Index
Journal :
Acta Materialia
Publication Type :
Academic Journal
Accession number :
130990483
Full Text :
https://doi.org/10.1016/j.actamat.2018.06.043