Back to Search Start Over

Deep Transcranial Magnetic Stimulation: Improved Coil Design and Assessment of the Induced Fields Using MIDA Model.

Authors :
Samoudi, Amine M.
Tanghe, Emmeric
Martens, Luc
Joseph, Wout
Source :
BioMed Research International. 6/5/2018, Vol. 2018, p1-9. 9p.
Publication Year :
2018

Abstract

Stimulation of deep brain structures by transcranial magnetic stimulation (TMS) is a method for activating deep neurons in the brain and can be beneficial for the treatment of psychiatric and neurological disorders. To numerically investigate the possibility for deeper brain stimulation (electric fields reaching the hippocampus, the nucleus accumbens, and the cerebellum), combined TMS coils using the double-cone coil with the Halo coil (HDA) were modeled and investigated. Numerical simulations were performed using MIDA: a new multimodal imaging-based detailed anatomical model of the human head and neck. The 3D distributions of magnetic flux density and electric field were calculated. The percentage of volume of each tissue that is exposed to electric field amplitude equal or greater than 50% of the maximum amplitude of E in the cortex for each coil was calculated to quantify the electric field spread (V50). Results show that only the HDA coil can spread electric fields to the hippocampus, the nucleus accumbens, and the cerebellum with V50 equal to 0.04%, 1.21%, and 6.2%, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23146133
Volume :
2018
Database :
Academic Search Index
Journal :
BioMed Research International
Publication Type :
Academic Journal
Accession number :
129958636
Full Text :
https://doi.org/10.1155/2018/7061420