Back to Search Start Over

Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers

Authors :
Mithieux, Suzanne M.
Rasko, John E.J.
Weiss, Anthony S.
Source :
Biomaterials. Sep2004, Vol. 25 Issue 20, p4921. 7p.
Publication Year :
2004

Abstract

A key objective of bioengineering is the development of new scaffolding biomaterials with appropriate mechanical and biological properties such as strength, elasticity and biocompatibility that mimic the native host connective tissue. Here we describe the production and properties of massive synthetic elastin assemblies formed by chemically cross-linking recombinant human tropoelastin with bis(sulfosuccinimidyl) suberate, permitting the construction of elastic sponges, sheets and tubes. The innate characteristics of synthetic elastin constructs are common with those of native elastin. The Young''s Modulus ranged from 220 to 280 kPa with linearity of extension to at least 150%. Synthetic elastin was extensible by 200–370%. The constructs behaved as hydrogels and displayed stimuli-responsive characteristics towards temperature and salt concentrations. Intrinsic fluorescence spectroscopy demonstrated that the elastin fluorophore is a feature of the polypeptide. Scanning electron microscopy allowed us to construct a model of elastin assembly that was driven by the lateral association of small twisted rope-like fibrils. FT–Raman spectra at 100% strain gave amide I and III peaks that correlated with a stretch-dependent increase in α-helical content. Growth and proliferation of cells were supported in vitro while in vivo implants were well tolerated. We conclude that synthetic elastin has potential as a novel biomaterial that can be easily molded into a variety of shaped tissue substrates and has a range of properties that are required for elastic, cell-interacting and compliant applications. Furthermore, its in vitro construction provides a powerful tool to probe the early stages of elastin assembly and the molecular basis for its elasticity. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01429612
Volume :
25
Issue :
20
Database :
Academic Search Index
Journal :
Biomaterials
Publication Type :
Academic Journal
Accession number :
12977602
Full Text :
https://doi.org/10.1016/j.biomaterials.2004.01.055