Back to Search Start Over

Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide.

Authors :
Martín-García, Beatriz
Bi, Yu
Prato, Mirko
Spirito, Davide
Krahne, Roman
Konstantatos, Gerasimos
Moreels, Iwan
Source :
Solar Energy Materials & Solar Cells. Aug2018, Vol. 183, p1-7. 7p.
Publication Year :
2018

Abstract

PbS nanocrystals are an important narrow-gap material for solar cells and photodetectors. Nevertheless, their application may be limited because device performance can be affected by atmospheric conditions. Indeed, the presence of oxygen and/or water can degrade the active layers, possibly leading to device failure. Strategies to address this issue are therefore actively explored. Here we report a solution-processed PbS quantum dot solar cell, consisting of a PbS-silane functionalized reduced graphene oxide (PbS-rGO) layer on top of the PbS absorber film, which enhances device stability, especially when the solar cells are exposed to moisture. Power conversion efficiency (PCE) measurements demonstrate a slower degradation under continuous illumination for solar cells with PbS-rGO. When storing the samples under saturated water vapor, differences are even more remarkable: with PbS-rGO the solar cells essentially maintain their initial PCE, while the PCE of the PbS reference devices is reduced by 50% after 5 days. Scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy reveal the damage to the PbS films and the formation of PbSO x crystals in the PbS reference devices. Such crystals are not observed in the PbS-rGO devices, further supporting the importance of the PbS-rGO barrier layer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09270248
Volume :
183
Database :
Academic Search Index
Journal :
Solar Energy Materials & Solar Cells
Publication Type :
Academic Journal
Accession number :
129647102
Full Text :
https://doi.org/10.1016/j.solmat.2018.04.005