Back to Search Start Over

Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador.

Authors :
Siegel, Karin
Vasyukova, Olga V.
Williams-Jones, Anthony E.
Source :
Lithos. May2018, Vol. 308, p34-52. 19p.
Publication Year :
2018

Abstract

Although it is well known that A-type granites are enriched in the rare earth elements (REE) and other high field strength elements (HFSE), the magmatic processes that concentrate these elements are still poorly understood. The 1.24 Ga Strange Lake pluton in northern Québec-Labrador provides an extraordinary example of hyper-enrichment in the REE, Zr, and Nb in a peralkaline A-type granite. The pluton consists of two hypersolvus granite units (southern and northern) and a transsolvus granite, all of which contain perthitic alkali feldspar as the earliest major mineral; the transsolvus granite also contains separate albite and microcline crystals. Arfvedsonite, a sodic amphibole, occurs exclusively as phenocrysts in the transsolvus granite, whereas in the hypersolvus granite it is present as a late, interstitial phase. The primary HFSE minerals are zircon, monazite-(Ce), gagarinite-(Ce) and the pyrochlore group minerals. Magma evolution was monitored by the alumina content in the bulk rock, which decreases from the southern to the northern hypersolvus granite and is lowest in the transsolvus granite. Alkalinity indices and bulk Si, Fe, Rb, REE, Zr, Nb concentrations show the opposite trend. Alkali feldspar compositions mirror the trend shown by the bulk rock, i.e., decreasing Al contents are accompanied by increasing Si, Fe 3+ , REE, Zr and Nb contents. The major driving forces for the evolution of the hypersolvus magma prior to emplacement were the early separation of a fluoride melt from the silicate melt and the crystallization of alkali feldspar and HFSE-rich phases (zircon, monazite-(Ce), pyrochlore group). An alkali feldspar-rich crystal-mush containing LREE-fluoride melt droplets was emplaced as the least evolved southern hypersolvus granite. Massive fractionation of alkali feldspar led to a sharp increase in ƒH 2 O and F − activity in the magma chamber that triggered the crystallization of arfvedsonite and was followed by emplacement of the northern hypersolvus granite, which contained a higher proportion of LREE-fluoride melt droplets. Further evolution in the magma chamber led to a transition from a miaskitic to an agpaitic composition. The transsolvus granite was intruded in the form of a low viscosity crystal mush of alkali feldspar, quartz, arfvedsonite (after appreciable crystallization of arfvedsonite) and LREE-fluoride melt droplets. Upon emplacement, arfvedsonite (and gagarinite-(Ce)) crystals segregated as cumulates in response to a combination of flow differentiation and gravity settling. The immiscible fluoride melt accumulated in a volatile-rich residual silicate magma, which migrated to the top of the pluton where it formed the F-REE-rich cores of highly mineralized pegmatites. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00244937
Volume :
308
Database :
Academic Search Index
Journal :
Lithos
Publication Type :
Academic Journal
Accession number :
129333596
Full Text :
https://doi.org/10.1016/j.lithos.2018.03.003