Back to Search
Start Over
4-Chlorophenol biodegradation facilitator composed of recombinant multi-biocatalysts immobilized onto montmorillonite.
- Source :
-
Bioresource Technology . Jul2018, Vol. 259, p268-275. 8p. - Publication Year :
- 2018
-
Abstract
- A biodegradation facilitator which catalyzes the initial steps of 4-chlorophenol (4-CP) oxidation was prepared by immobilizing multiple enzymes (monooxygenase, CphC-I and dioxygenase, CphA-I) onto a natural inorganic support. The enzymes were obtained via overexpression and purification after cloning the corresponding genes ( cphC-I and cphA-I ) from Arthrobacter chlorophenolicus A6. Then, the recombinant CphC-I was immobilized onto fulvic acid-activated montmorillonite. The immobilization yield was 60%, and the high enzyme activity (82.6%) was retained after immobilization. Kinetic analysis indicated that the Michaelis-Menten model parameters for the immobilized CphC-I were similar to those for the free enzyme. The enzyme stability was markedly enhanced after immobilization. The immobilized enzyme exhibited a high level of activity even after repetitive use (84.7%) and powdering (65.8%). 4-CP was sequentially oxidized by a multiple enzyme complex, comprising the immobilized CphC-I and CphA-I, via the hydroquinone pathway: oxidative transformation of 4-CP to hydroxyquinol followed by ring fission of hydroxyquinol. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09608524
- Volume :
- 259
- Database :
- Academic Search Index
- Journal :
- Bioresource Technology
- Publication Type :
- Academic Journal
- Accession number :
- 129008798
- Full Text :
- https://doi.org/10.1016/j.biortech.2018.03.066