Back to Search Start Over

Online multiple object tracking via exchanging object context.

Authors :
Yu, Hongyang
Qin, Lei
Huang, Qingming
Yao, Hongxun
Source :
Neurocomputing. May2018, Vol. 292, p28-37. 10p.
Publication Year :
2018

Abstract

Multiple object tracking is a key problem for many computer vision applications such as video surveillance, advanced driver assistance or animation. Most of existing tracking-by-detection methods are mainly based on object appearances and motions. However, the contextual information around the target has not been fully exploited. In this paper, we pay more attention to the contextual information and propose an Exchanging Object Context (EOC) model, which takes full advantage of the context information. Specifically, we implement an efficient and accurate online multiple object tracking algorithm with a novel affinity measure to associate detections. This measure calculates the similarity between targets and detections with the background smoothness after exchanging the contexts between detections and targets, using a novel color histogram descriptor. We refine the bounding boxes by measuring the context changes. Extensive experimental results on two public benchmarks demonstrate the effectiveness of the proposed tracking method with comparisons to several state-of-the-art trackers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09252312
Volume :
292
Database :
Academic Search Index
Journal :
Neurocomputing
Publication Type :
Academic Journal
Accession number :
128741957
Full Text :
https://doi.org/10.1016/j.neucom.2018.02.068