Back to Search Start Over

Engineering Elastin-Like Polypeptide-Poly(ethylene glycol) Multiblock Physical Networks.

Authors :
Araújo, Andreia
Olsen, Bradley D.
Machado, Ana Vera
Source :
Biomacromolecules. Feb2018, Vol. 19 Issue 2, p329-339. 11p.
Publication Year :
2018

Abstract

Hybrids of protein biopolymers and synthetic polymers are a promising new class of soft materials, as the advantages of each component can be complementary. A recombinant elastin-like polypeptide (ELP) was conjugated to poly(ethylene glycol) (PEG) by macromolecular coupling in solution to form multiblock ELP-PEG copolymers. The hydrated copolymer preserved the thermoresponsive properties from the ELP block and formed hydrogels with different transition temperatures depending on salt concentration. Small angle scattering indicates that the copolymer hydrogels form sphere-like aggregates with a "fuzzy" interface, while the films form a fractal network of nanoscale aggregates. The use of solutions with different salt concentrations to prepare the hydrogels was found to influence the transition temperature, the mechanical properties, and the size of the nanoscale structure of the hydrogel without changing the secondary structure of the ELP. The salt variation and the addition of a plasticizer also affected the nanoscale structure and the mechanical characteristics of the films. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15257797
Volume :
19
Issue :
2
Database :
Academic Search Index
Journal :
Biomacromolecules
Publication Type :
Academic Journal
Accession number :
128520664
Full Text :
https://doi.org/10.1021/acs.biomac.7b01424