Back to Search Start Over

SD大鼠乳鼠脱细胞心脏支架的细胞相容性评价.

Authors :
韦雅淑
徐亦辰
赵文婧
王慧丰
刘红静
谢丹尼
陈维平
Source :
Chinese Journal of Tissue Engineering Research / Zhongguo Zuzhi Gongcheng Yanjiu. 1/18/2018, Vol. 22 Issue 2, p261-266. 6p.
Publication Year :
2018

Abstract

BACKGROUND: Owing to the advantages of low sensitization and natural three-dimensional structure, good biocompatibility and cell affinity, acellular heart scaffold materials are of great current interest in cardiac tissue engineering. OBJECTIVE: To investigate the cytocompatibility of an acellular heart scaffold of neonatal rats. METHODS: In order to construct the seed cell-scaffold complex, passage 3 bone marrow mesenchymal stem cells (BMSCs) of Sprague-Dawley neonatal rats were cultured with an acellular heart scaffold of Sprague-Dawley neonatal rats for 7 and 14 days. Hematoxylin eosin staining and scanning electron microscopy were used to observe the growth of BMSCs in the scaffold. The cell-scaffold complex was induced in myocardial tissue lysate for 14 days. BMSCs with planar orientation differentiation for 14 and 20 days were used as control group. RT-PCR was used to detect the expression of myosin heavy chain α-MHC and zinc finger transcription factor GATA-4 in BMSCs. RESULTS AND CONCLUSION: (1) Hematoxylin-eosin staining showed the acellular heart scaffold contained a large number of eosinophilic fibrous structures, and the cell number of cell-scaffold complex after co-culture for 14 days was higher than that after co-culture for 7 days. Under the scanning electron microscope, a large amount of cells adhered to the fiber surface of the acellular scaffold at 14 days of co-culture. (2) BMSCs with planar orientation differentiation for 14 and 20 days had the bamboo-like and myotube-like structures. In the cell-scaffold complex with planar orientation differentiation for 14 days, the expression of α-MHC and GATA-4 could be detected, and their expression levels fulfilled the requirement for the presence of bamboo-like cells and myotube-like structure. These results indicate that the acellular heart scaffold exhibits good cytocompatibility. [ABSTRACT FROM AUTHOR]

Details

Language :
Chinese
ISSN :
20954344
Volume :
22
Issue :
2
Database :
Academic Search Index
Journal :
Chinese Journal of Tissue Engineering Research / Zhongguo Zuzhi Gongcheng Yanjiu
Publication Type :
Academic Journal
Accession number :
128463877
Full Text :
https://doi.org/10.3969/j.issn.2095-4344.0016