Back to Search Start Over

Accuracy and precision of consumer-level activity monitors for stroke detection during wheelchair propulsion and arm ergometry.

Authors :
Kressler, Jochen
Koeplin-Day, Joshua
Muendle, Benedikt
Rosby, Brice
Santo, Elizabeth
Domingo, Antoinette
Source :
PLoS ONE. 2/14/2018, Vol. 13 Issue 2, p1-15. 15p.
Publication Year :
2018

Abstract

The purpose of this study was to evaluate whether consumer-level activity trackers can estimate wheelchair strokes and arm ergometer revolutions. Thirty able-bodied participants wore three consumer-level activity trackers (Garmin VivoFit, FitBit Flex, and Jawbone UP24) on the wrist. Participants propelled a wheelchair at fixed frequencies (30, 45 and 60 strokes per minute (spm)) three minutes each and at pre-determined varied frequencies, (30–80 spm) for two minutes. Participants also freely wheeled through an obstacle course. 10 other participants performed arm-ergometry at 40, 60 and 80 revolutions per minute (rpm), for three minutes each. Mean percentage error (MPE(SD)) for 30 spm were ≥46(26)% for all monitors, and declined to 3-6(2–7)% at 60 spm. For the obstacle course, MPE ranged from 12-17(7–13)% for all trackers. For arm-ergometry, MPE was at 1-96(0–37)% with the best measurement for the Fitbit at 60 and 80 rpm, and the Garmin at 80rpm, with MPE = 1(0–1)%. The consumer-level wrist-worn activity trackers we tested have higher accuracy/precision at higher movement frequencies but perform poorly at lower frequencies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
13
Issue :
2
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
127992321
Full Text :
https://doi.org/10.1371/journal.pone.0191556