Back to Search Start Over

Kinetic Controlled Glass Transition Measurement of Organic Aerosol Thin Films Using Broadband Dielectric Spectroscopy.

Authors :
Yue Zhang
Shachi Katira
Lee, Andrew
Lambe, Andrew T.
Onasch, Timothy B.
Wen Xu
Brooks, William A.
Canagaratna, Manjula R.
Freedman, Andrew
Jayne, John T.
Worsnop, Doug R.
Davidovits, Paul
Chandler, David
Kolb, Charles E.
Source :
Atmospheric Measurement Techniques Discussions. 2018, p1-29. 29p.
Publication Year :
2018

Abstract

Glass transitions from liquid to semi-solid and solid phase states have important implications for reactivity, growth, and cloud forming (cloud condensation nuclei and ice nucleation) capabilities of secondary organic aerosols (SOA). The small size and relatively low mass concentration of SOA in the atmosphere make it difficult to measure atmospheric SOA glass transitions using conventional methods. To circumvent these difficulties, we have adopted a new technique for measuring glass forming properties of atmospherically relevant organic aerosols. Aerosol particles to be studied are deposited in the form of a thin film onto an interdigitated electrode (IDE) using electrostatic precipitation. Dielectric spectroscopy provides dipole relaxation rates for organic aerosols as a function of temperature (373 to 233 K) that are used to calculate the glass transition temperatures for several cooling rates. IDE-enabled broadband dielectric spectroscopy (BDS) was successfully used to measure the kinetically controlled glass transition temperatures of glycerol and citric acid aerosols with selected cooling rates. The glass transition results agree well with available literature data for these two compounds. The results indicate that the IDE-BDS method can provide accurate glass transition data for organic aerosols under atmospheric conditions. The BDS data obtained with the IDE-BDS technique can be used to characterize glass transitions for both simulated and ambient organic aerosols and to model their climate effects. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18678610
Database :
Academic Search Index
Journal :
Atmospheric Measurement Techniques Discussions
Publication Type :
Academic Journal
Accession number :
127899886
Full Text :
https://doi.org/10.5194/amt-2017-425