Back to Search Start Over

多次间歇LED光照射对铁观音风味组分的影响.

Authors :
陈寿松
游芳宁
周子维
李鑫磊
金心怡
郝志龙
孙云
Source :
Transactions of the Chinese Society of Agricultural Engineering. 2018, Vol. 34 Issue 2, p308-314. 7p.
Publication Year :
2018

Abstract

Light is an important factor, which decides joyful aroma and mellow taste in Oolong tea. Solar withering is the first and essential process, and a large number of primary and secondary metabolites are induced and regulated under several minutes of radiation during Oolong tea manufacturing. However, rainy days usually take place in fastigium production period, and thus quality of Oolong tea has no fruit floral odor and taste is niffy. In recent years, many scholars selected LED (light emitting diode) as an artificial light source to improve quality of special tea. In order to explore the influence of multi intermittence radiation radiation with different times by LED on quality in Oolong tea, in this study, Tieguanyin was taken as research material, and dark treatment (CK) was used as control. Meanwhile, 3 treatments were performed by white LED, one time radiation (S-1), which was conducted before the first assignment in turning over process, the other two treatments (S-2, S-3) were designed by adding radiation for 1 time and 2 times before the second and third assignment in turning over process, respectively. The parameters of environment were set as follows: Photosynthetically active radiation (PAR) was set as (400±10) μmol/(m2•s), duration of illumination was set as 30 min for each time, temperature was set as 25 ℃, relative humidity was set as 60%, and thickness of leaves was set as 10 mm. Then, 4 samples of primary tea were made following technological process of fen-flavor Tieguanyin, and were frozen in refrigerator at -20 ℃. Catechins, amino acids, aroma and sensory evaluation in Tieguanyin primary tea were performed for all samples by UPLC-QqQ-MS and HS-SPME-GC-MS. Firstly, the multi intermittence radiation device by LED in Oolong tea was developed by ourselves. The device mainly included LED panel, heat pump, rocking device, transfer platform, ventilating slot, superior lobe device, and transmission mechanism. Several set devices would perform cycle operation of different times in light radiation and turning over process. Secondly, compared to control treatment, contents of all nongallated and gallated catechins including C (catechin), EC (epicatechin), GC (gallocatechin), EGC (epigallocatechin), GCG (gallocatechin gallate), ECG (epicatechin gallate), EGCG (epigallocatechin gallate) were significantly reduced in different times of radiation. The contents of total catechins in 4 samples with ascending order were showed as follows: S-2, S-3, S-1, CK. The contents of catechins were very dramatically decreased in S-2 and S-3 by LED, and it showed a reduction of 29.6 % and 24.4 %, respectively, and had a lower bitterness in primary tea. However, the total content of amino acids was enhanced, especially in S-2 and S-3 treatment, and it showed a rise of 20.5 % and 15.4 %, respectively. The content of total amino acids in 4 samples with ascending order was showed as follows: CK, S-1, S-3, S-2. Several aromatic and fresh-sweet amino acids including Trp, Glu, Asp showed an obvious increasing trend, which resulted in more brisk and sweet taste in primary tea. Accordingly, the ratio of phenols to amino acids showed a decrease variation, and can improve taste sensory in primary tea. Thirdly, volatile components of different treatments were assayed by gas chromatography mass spectrometry (GC-MS). Principal component analysis method was also used to evaluate the results. Relative content of alpha-farnesene and nerolidol in 4 samples with ascending order was showed as follows: CK, S-3, S-1, S-2. In contrast to the CK, the relative contents of alpha-farnesene and nerolidol in S-2 treatment were increased by 56.28% and 62.51%, respectively. The comprehensive evaluation score of volatile quality in S-2 treatment was the highest, approached to 9.88, S-3 treatment ranked the second and the CK ranked the last. The sensory evaluation results of quality in primary tea showed a similar sort to principal component analysis of volatiles. In conclusion, the taste and volatile of Oolong tea can be regulated and improved by adding the appropriate times of light radiation, especially in S-2 treatment. It can be a promising technology, especially for the factorization and standardization on rainy days during Oolong tea manufacturing. [ABSTRACT FROM AUTHOR]

Details

Language :
Chinese
ISSN :
10026819
Volume :
34
Issue :
2
Database :
Academic Search Index
Journal :
Transactions of the Chinese Society of Agricultural Engineering
Publication Type :
Academic Journal
Accession number :
127765849
Full Text :
https://doi.org/10.11975/j.issn.1002-6819.2018.02.042