Back to Search Start Over

多旋翼植保无人飞机悬停下洗气流对雾滴运动规律的影响.

Authors :
杨风波
薛新宇
蔡晨
周晴晴
Source :
Transactions of the Chinese Society of Agricultural Engineering. 2018, Vol. 34 Issue 2, p64-73. 10p.
Publication Year :
2018

Abstract

Recently, multi-rotor unmanned aerial vehicle (UAV) becomes more and more irreplaceable in the field of plant protection. Multi-rotor unmanned plant protection machine has been widely used in pesticide spraying, pollination operation, and so on, however, the unclearness of wind field distribution leads to non-uniform deposition problem. In this paper, the influence of the down wash flow on the motion distribution of droplet group was studied for the multi-rotor UAV in hovering state. Based on the N-S equation and realizable k-ε turbulence model, the three-dimensional numerical model was established for six-rotor unmanned plant protection machine under 3 kg load condition. In the numerical calculation, 12 observation points were set at 2 heights directly below each rotor, and the wind velocity value at each point was observed. When the computing time reached 2.28 s, the wind velocity tended to be stable, and the 12 stable wind velocity pulsation values were obtained. The wind velocity of the down wash flow was tested one by one at the 12 observation points for the multi-rotor UAV in hovering state. Comparative analysis showed that the relative error of the velocity at the z direction between the experimental measurement and numerical simulation for characteristic points was less than 9% when the down wash flow was stable, and the reliability of the wind field numerical calculation was verified. Under the rotation of airfoil and the extrusion of the external atmospheric pressure, the “shrinkage-expansion-shrinkage” phenomenon appeared in the longitudinal main section; under the influence of wing interference caused by the opposite velocity of adjacent rotor, the turbulent effect of down wash flow was obvious, and the “airflow inlet” and “airflow outlet” region appeared between the wings area at the cross section. Droplet discrete phase was introduced to N-S equation, the momentum and energy equations were also corrected for continuous phase to establish two-phase flow model, then the two-phase flow model with droplet discrete phase was established for the nozzle, and the feasibility and validity of the two-phase flow model to calculate the trajectory of the droplets were also verified combined with the spray test. The advantages of easy boundary setting in numerical computation were used to discuss the influence law of droplet size on droplet motion for the atomization nozzle. Numerical results showed that the droplet distribution was basically circular, and the area of droplets with the highest concentration was the medium-sized droplet sedimentation area, which had the maximum differential ratio. Moreover, the numerical simulation results also showed that the smaller the droplet size, the smaller the droplet spray amplitude; the larger the droplet size of the droplet, the larger the final sub-velocity value at the vertical direction. Then the three-dimensional two-phase flow model was established for six-rotor unmanned plant protection machine, and the analysis showed that droplets were mainly distributed in the 3 “airflow inlet” areas and 3 “airflow outlet” areas where wing interference was obvious. The droplets in the inner side of down wash area were interlaced, and the horizontal travel of large particles was greater and they were distributed in the outside periphery of down wash area. When the diameter was less than 200 m, the droplet movement range could not cover all the “airflow inlet” area, and the droplets were mostly distributed in the center down wash area. When the diameter was greater than 250 m, the droplet motion region gradually covered all the “airflow inlet” and “airflow outlet”. The result can lay a foundation for the research of drifting and deposition of droplets under the disturbance of vertical wind flow, down wash flow and instantaneous transverse wind during the flight spraying. [ABSTRACT FROM AUTHOR]

Details

Language :
Chinese
ISSN :
10026819
Volume :
34
Issue :
2
Database :
Academic Search Index
Journal :
Transactions of the Chinese Society of Agricultural Engineering
Publication Type :
Academic Journal
Accession number :
127765839
Full Text :
https://doi.org/10.11975/j.issn.1002-6819.2018.02.009