Back to Search Start Over

Highly Sustainable Zinc Anodes for a Rechargeable Hybrid Aqueous Battery.

Authors :
Sun, Kyung E. K.
Hoang, Tuan K. A.
Doan, The Nam Long
Yu, Yan
Chen, Pu
Source :
Chemistry - A European Journal. Feb2018, Vol. 24 Issue 7, p1667-1673. 7p.
Publication Year :
2018

Abstract

Abstract: The synthesis of novel zinc electrodes has been successfully implemented by using the electroplating method with the aid of inorganic additives in the electroplating solution. The selected inorganic additives are indium sulfate, tin oxide, and boric acid. From X‐ray diffraction results, these synthesized zinc electrodes prefer (002) and/or (103) crystallographic orientations, representing basal morphology and high resistance to dendrite growth. The corrosion rates of these electroplated zinc samples decrease as much as 11 times smaller than the corrosion rate on zinc foil when the zinc materials are in contact with the aqueous electrolyte of a rechargeable hybrid aqueous battery (ReHAB). The ReHABs employing these anodes exhibit up to a threefold decrease in float charge current density after a seven‐day constant‐voltage charging at 2.1 V versus Zn2+/Zn. Furthermore, the capacity retention is up to 15 % higher than the performance of battery containing commercial Zn after 1000 cycles of charge–discharge. The significant advancements are attributed to the careful preparation of the anode, which contains appropriate crystallographic orientation and morphology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09476539
Volume :
24
Issue :
7
Database :
Academic Search Index
Journal :
Chemistry - A European Journal
Publication Type :
Academic Journal
Accession number :
127746021
Full Text :
https://doi.org/10.1002/chem.201704440