Back to Search Start Over

C/EBPα transcription factor is regulated by the RANK cytoplasmic 535IVVY538 motif and stimulates osteoclastogenesis more strongly than c-Fos.

Authors :
Jules, Joel
Wei Chen
Xu Feng
Yi-Ping Li
Source :
Journal of Biological Chemistry. 1/26/2018, Vol. 294 Issue 4, p1480-1492. 13p.
Publication Year :
2018

Abstract

Binding of receptor activator of NF-κB ligand (RANKL) to its receptor RANK on osteoclast (OC) precursors up-regulates c-Fos and CCAAT/enhancer-binding protein-α (C/EBPα), two critical OC transcription factors. However, the effects of c-Fos and C/EBPα on osteoclastogenesis have not been compared. Herein, we demonstrate that overexpression of c-Fos or C/EBPα in OC precursors up-regulates OC genes and initiates osteoclastogenesis independently of RANKL. However, although C/EBPα up-regulated c-Fos, c-Fos failed to up-regulate C/EBPα in OC precursors. Consistently, C/EBPα overexpression more strongly promoted OC differentiation than did c-Fos overexpression. RANKhas a cytoplasmic 535IVVY538 (IVVY) motif that is essential for osteoclastogenesis, and we found that mutation of the IVVY motif blocked OC differentiation by partly inhibiting expression of C/EBPα but not expression of c-Fos. We therefore hypothesized that C/EBPα overexpression might rescue osteoclastogenesis in cells expressing the mutated IVVY motif. However, overexpression of C/EBPα or c-Fos failed to stimulate osteoclastogenesis in the mutant cells. Notably, the IVVY motif mutation abrogatedOCgene expression compared with a vector control, suggesting that the IVVY motif might counteract OC inhibitors during osteoclastogenesis. Consistently, the IVVY motif mutant triggered up-regulation of recombinant recognition sequence-binding protein at the Jκ site (RBP-J) protein, a potent OC inhibitor. Mechanistically, C/EBPα or c-Fos overexpression in the mutant cells failed to control the up-regulated RBP-J expression, leading to suppression of OC genes. Accordingly, RBP-J silencing in the mutant cells rescued osteoclastogenesis with C/EBPα or c-Fos overexpression with C/EBPα exhibiting a stronger osteoclastogenic effect. Collectively, our findings indicate that C/EBPα is a stronger inducer of OC differentiation than c-Fos, partly via C/EBPα regulation by the RANK 535IVVY538 motif. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
294
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
127712058
Full Text :
https://doi.org/10.1074/jbc.M116.736009