Back to Search
Start Over
Relating zeta functions of discrete and quantum graphs.
- Source :
-
Letters in Mathematical Physics . Feb2018, Vol. 108 Issue 2, p377-390. 14p. - Publication Year :
- 2018
-
Abstract
- We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03779017
- Volume :
- 108
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Letters in Mathematical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 127450341
- Full Text :
- https://doi.org/10.1007/s11005-017-1017-0