Back to Search Start Over

CT image segmentation methods for bone used in medical additive manufacturing.

Authors :
van Eijnatten, Maureen
van Dijk, Roelof
Dobbe, Johannes
Streekstra, Geert
Koivisto, Juha
Wolff, Jan
Source :
Medical Engineering & Physics. Jan2018, Vol. 51, p6-16. 11p.
Publication Year :
2018

Abstract

Aim of the study The accuracy of additive manufactured medical constructs is limited by errors introduced during image segmentation. The aim of this study was to review the existing literature on different image segmentation methods used in medical additive manufacturing. Methods Thirty-two publications that reported on the accuracy of bone segmentation based on computed tomography images were identified using PubMed, ScienceDirect, Scopus, and Google Scholar. The advantages and disadvantages of the different segmentation methods used in these studies were evaluated and reported accuracies were compared. Results The spread between the reported accuracies was large (0.04 mm – 1.9 mm). Global thresholding was the most commonly used segmentation method with accuracies under 0.6 mm. The disadvantage of this method is the extensive manual post-processing required. Advanced thresholding methods could improve the accuracy to under 0.38 mm. However, such methods are currently not included in commercial software packages. Statistical shape model methods resulted in accuracies from 0.25 mm to 1.9 mm but are only suitable for anatomical structures with moderate anatomical variations. Conclusions Thresholding remains the most widely used segmentation method in medical additive manufacturing. To improve the accuracy and reduce the costs of patient-specific additive manufactured constructs, more advanced segmentation methods are required. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13504533
Volume :
51
Database :
Academic Search Index
Journal :
Medical Engineering & Physics
Publication Type :
Academic Journal
Accession number :
127387773
Full Text :
https://doi.org/10.1016/j.medengphy.2017.10.008