Back to Search Start Over

Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced acute kidney injury.

Authors :
Jeong, Bo Young
Lee, Hoi Young
Park, Chang Gyo
Kang, Jaeku
Yu, Seong-Lan
Choi, Du-ri
Han, Seung-Yun
Park, Moon Hyang
Cho, Sungkwon
Lee, Soo Young
Hwang, Won-Min
Yun, Sung-Ro
Ryu, Hye-Myung
Oh, Eun-Joo
Park, Sun-Hee
Kim, Yong-Lim
Yoon, Se-Hee
Source :
PLoS ONE. 1/12/2018, Vol. 13 Issue 1, p1-22. 22p.
Publication Year :
2018

Abstract

Contrast-induced acute kidney injury (CIAKI) is a leading cause of acute kidney injury following radiographic procedures. Intrarenal oxidative stress plays a critical role in CIAKI. Nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidases (Noxs) are important sources of reactive oxygen species (ROS). Among the various types of Noxs, Nox4 is expressed predominantly in the kidney in rodents. Here, we evaluated the role of Nox4 and benefit of Nox4 inhibition on CIAKI using in vivo and in vitro models. HK-2 cells were treated with iohexol, with or without Nox4 knockdown, or the most specific Nox1/4 inhibitor (GKT137831). Effects of Nox4 inhibition on CIAKI mice were examined. Expression of Nox4 in HK-2 cells was significantly increased following iohexol exposure. Silencing of Nox4 rescued the production of ROS, downregulated pro-inflammatory markers (particularly phospho-p38) implicated in CIAKI, and reduced Bax and caspase 3/7 activity, which resulted in increased cellular survival in iohexol-treated HK-2 cells. Pretreatment with GKT137831 replicated these effects by decreasing levels of phospho-p38. In a CIAKI mouse model, even though the improvement of plasma blood urea nitrogen was unclear, pretreatment with GKT137831 resulted in preserved structure, reduced expression of 8-hydroxy-2’-deoxyguanosine (8OHdG) and kidney injury molecule-1 (KIM-1), and reduced number of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive cells. These results suggest Nox4 as a key source of reactive oxygen species responsible for CIAKI and provide a novel potential option for prevention of CIAKI. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
13
Issue :
1
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
127327936
Full Text :
https://doi.org/10.1371/journal.pone.0191034