Back to Search
Start Over
Overexpression of Lhx2 suppresses proliferation of human T cell acute lymphoblastic leukemia-derived cells, partly by reducing LMO2 protein levels.
- Source :
-
Biochemical & Biophysical Research Communications . Jan2018, Vol. 495 Issue 3, p2310-2316. 7p. - Publication Year :
- 2018
-
Abstract
- T cell acute lymphoblastic leukemia (T-ALL) is a malignant cancer with poor prognosis. The transcriptional co-factor LIM domain only 2 (LMO2) and its target gene HHEX are essential for self-renewal of T cell precursors and T-ALL etiology. LMO2 directly associates with LDB1 in a large DNA-containing nuclear complex and controls the transcription of T-ALL-related genes. Recently, we reported that overexpression of the LIM-homeodomain transcription factor, Lhx2, results in liberation of the Lmo2 protein from the Lmo2-Ldb1 complex, followed by ubiquitin proteasome mediated degradation. Here, we found that proliferation of five human T-ALL-derived cell lines, including CCRF-CEM, was significantly suppressed by retroviral overexpression of Lhx2. The majority of Lhx2-transduced CCRF-CEM cells arrested in G 0 phase and subsequently underwent apoptosis. Expression of LMO2 protein as well as HHEX , ERG , HES1 and MYC genes was repressed in CCRF-CEM cells by transduction with Lhx2. Lhx2-mediated growth inhibition was partially rescued by simultaneous overexpression of Lmo2; however, both the C-terminal LIM domain and the homeodomain of Lhx2 were required for its growth-suppressive activity. These data indicate that Lhx2 is capable of blocking proliferation of T-ALL-derived cells by both LMO2-dependent and -independent means. We propose Lhx2 as a new molecular tool for anti-T-ALL drug development. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0006291X
- Volume :
- 495
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Biochemical & Biophysical Research Communications
- Publication Type :
- Academic Journal
- Accession number :
- 127075249
- Full Text :
- https://doi.org/10.1016/j.bbrc.2017.12.135