Back to Search
Start Over
Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers.
- Source :
-
BBA: Biomembranes . Feb2018, Vol. 1860 Issue 2, p257-263. 7p. - Publication Year :
- 2018
-
Abstract
- Discovering how membrane proteins recognize signals and passage molecules remains challenging. Life depends on compartmentalizing these processes into dynamic lipid bilayers that are technically difficult to work with. Several polymers have proven adept at separating the responsible machines intact for detailed analysis of their structures and interactions. Styrene maleic acid (SMA) co-polymers efficiently solubilize membranes into native nanodiscs and, unlike amphipols and membrane scaffold proteins, require no potentially destabilizing detergents. Here we review progress with the SMA lipid particle (SMALP) system and its impacts including three dimensional structures and biochemical functions of peripheral and transmembrane proteins. Polymers systems are emerging to tackle the remaining challenges for wider use and future applications including in membrane proteomics, structural biology of transient or unstable states, and discovery of ligand and drug-like molecules specific for native lipid-bound states. [ABSTRACT FROM AUTHOR]
- Subjects :
- *STYRENE
*MALEIC acid
*MEMBRANE proteins
*SOLUBILIZATION
*SCAFFOLD proteins
Subjects
Details
- Language :
- English
- ISSN :
- 00052736
- Volume :
- 1860
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- BBA: Biomembranes
- Publication Type :
- Academic Journal
- Accession number :
- 126736859
- Full Text :
- https://doi.org/10.1016/j.bbamem.2017.10.019