Back to Search
Start Over
EPR Characterization of Copper(II) Complexes of PAMAM-Py Dendrimers for Biocatalysis in the Absence and Presence of Reducing Agents and a Spin Trap.
- Source :
-
Journal of Physical Chemistry B . 11/16/2017, Vol. 121 Issue 45, p10498-10507. 10p. - Publication Year :
- 2017
-
Abstract
- Polyamidoamine (PAMAM) dendrimers at different generations (from G2 to G6) were functionalized with pyridine (Py) groups at the external surface, and their complexation behavior with Cu(II) at increasing molar ratios between the ions and the Py groups was analyzed in the absence and presence of reducing agents and a spin trap. These Cu(II)–dendrimer complexes may be used as antitumor and antiamyloidogenesis drugs, similarly to other Cu(II) –dendrimer complexes, and as biocatalysts. Indeed, they have revealed to selectively catalyze molecular oxygen reduction to generate reactive oxygen species (ROS). A computer-aided electron paramagnetic resonance (EPR) study of these complexes allowed us to identify different complexes by increasing the Cu(II)/Py molar ratio for the different generations. Binuclear EPR-silent complexes were formed at the highest generations. The differently complexed Cu(II) ions showed a different capability to be reduced, starting from the most exposed at the dendrimer surface bearing a stable Cu(II) –Py2 coordination. Cu(II) –G5 showed peculiar structural properties which probably favored its activity as biocatalyst. The spin trap was able to capture hydroxyl radicals, which became clearly EPR visible after all Cu(II) ions were reduced to Cu(I). This method may be used as a platform to study interactions of Cu(II) in nanosized macromolecules for biomedical purposes, mainly in biocatalysis involving redox reactions and formation of ROS. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15206106
- Volume :
- 121
- Issue :
- 45
- Database :
- Academic Search Index
- Journal :
- Journal of Physical Chemistry B
- Publication Type :
- Academic Journal
- Accession number :
- 126360071
- Full Text :
- https://doi.org/10.1021/acs.jpcb.7b09464