Back to Search Start Over

MicroRNA-137 and its downstream target LSD1 inversely regulate anesthetics-induced neurotoxicity in dorsal root ganglion neurons.

Authors :
Chen, Lingyang
Wang, Xiaodan
Huang, Wenguang
Ying, Tingting
Chen, Minjuan
Cao, Jianbin
Wang, Mingcang
Source :
Brain Research Bulletin. Oct2017, Vol. 135, p1-7. 7p.
Publication Year :
2017

Abstract

Purpose Anesthetic reagents, such as bupivacaine (Bv), induce significant neurotoxicity in dorsal root ganglion neurons (DRGNs). In this study, we investigated the expression, function and cross-association of microRNA-137-3p (miR-137-3p) and lysine (K)-specific demethylase 1A (LSD1) in a murine model of Bv-induced neural injury in DRGNs. Methods Murine DRGNs were culture in vitro and treated with Bv. QPCR was used to evaluate miR-137-3p expression in Bv-injured DRGNs. MiR-137-3p was genetically downregulated to evaluate its rescuing effect on Bv-induced DRGN apoptosis and neurite retraction. The association of miR-137-3p on its downstream target, LSD1 coding gene KDM1A, was evaluated by dual-luciferase activity assay and qPCR. In miR-137-3p-downregulated DRGNs, KDM1A was inhibited to evaluate its involvement in miR-137-3p-mediated modulation on Bv-induced DRGN neurotoxicity. Furthermore, KDM1A expression in Bv-injured DRGN was evaluated by qPCR, and LSD1 was overexpressed in DRGN to evaluate its direct effect on Bv-induced neurotoxicity. Results MiR-137-3p was upregulated in Bv-injured DRGNs. MiR-137-3p downregulation rescued Bv-induced DRGN apoptosis and neurite retraction. LSD1 was demonstrated to be downstream to, and inversely modulated by miR-137-3p in DRGN. In Bv-injured DRGNs, LSD1 downregulation reversed miR-137-3p-downregualtion-induced neural protection. Furthermore, LSD1 upregulation directly rescued Bv-induced apoptosis and neurite retraction in DRGNs. Conclusions MiR-137-3p and its downstream target LSD1 are inversely associated to regulate anesthetics-induced neurotoxicity in DRGN. This signaling pathway may be a therapeutic candidate to reduce anesthetics-induced neurological damage in human patients. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03619230
Volume :
135
Database :
Academic Search Index
Journal :
Brain Research Bulletin
Publication Type :
Academic Journal
Accession number :
126253136
Full Text :
https://doi.org/10.1016/j.brainresbull.2017.09.004