Back to Search Start Over

The 3D nematic liquid crystal equations with blow-up criteria in terms of pressure.

Authors :
Liu, Qiao
Wang, Pei
Source :
Nonlinear Analysis: Real World Applications. Apr2018, Vol. 40, p290-306. 17p.
Publication Year :
2018

Abstract

In this paper, we concern the 3D nematic liquid crystal equations and prove three almost Serrin-type blow-up criteria for the breakdown of local in time smooth solutions in terms of pressure and gradient of the orientation field. More precisely, let T ∗ be the maximal time of the local smooth solution, then T ∗ < + ∞ if and only if ∫ 0 T ∗ ‖ ‖ ‖ P ( ⋅ , t ) ‖ L x 1 p ‖ L x 2 q ‖ L x 3 r β + ‖∇d(⋅,t)‖ L 4 8 d t = ∞ , with 2 β + 1 p + 1 q + 1 r = 2 and 2 ≤ p , q , r ≤ ∞ , 1 − ( 1 p + 1 q + 1 r ) ≥ 0 , and ∫ 0 T ∗ ‖ ‖ ‖ ∇ P ( ⋅ , t ) ‖ L x 1 p ‖ L x 2 q ‖ L x 3 r β + ‖ ∇ d ( ⋅ , t ) ‖ L 4 8 d t = ∞ , with 2 β + 1 p + 1 q + 1 r = 3 and 1 ≤ p , q , r ≤ ∞ , 1 − ( 1 2 p + 1 2 q + 1 2 r ) ≥ 0 , and ∫ 0 T ∗ ‖ ‖ ∂ 3 P ( ⋅ , t ) ‖ L x 3 γ ‖ L x 1 x 2 α β + ‖ ∇ d ( ⋅ , t ) ‖ L 4 8 d t = ∞ , with 2 β + 1 γ + 2 α = k ∈ [ 2 , 3 ) and 3 k ≤ γ ≤ α < 1 k − 2 . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14681218
Volume :
40
Database :
Academic Search Index
Journal :
Nonlinear Analysis: Real World Applications
Publication Type :
Academic Journal
Accession number :
126042499
Full Text :
https://doi.org/10.1016/j.nonrwa.2017.08.008