Back to Search Start Over

Astronomical imaging with the X-ray observatory Hitomi.

Astronomical imaging with the X-ray observatory Hitomi.

Authors :
Nakajima, Hiroshi
Source :
Nuclear Instruments & Methods in Physics Research Section A. Nov2017, Vol. 873, p16-20. 5p.
Publication Year :
2017

Abstract

We report an imaging capability of the Japan-led X-ray observatory Hitomi, formerly known as ASTRO-H. It carries four scientific instruments of Soft X-ray Imager (SXI: CCD camera), Hard X-ray Imager (HXI), Soft X-ray Spectrometer, and Soft Gamma-ray Detector, allowing us to perform a wide-band high-sensitive imaging spectroscopy. We highlight the specification and the performance we obtained with primarily regard to X-ray and soft gamma-ray imaging. Primary imaging instrument SXI utilizes four large-area X-ray CCDs positioned at the focal plane of Soft X-ray Telescope (SXT-I). Imaging area with a size of 62 mm square makes a largest field of view (FoV) of 38′ square among the focal plane X-ray detectors, which enables us to observe extended objects such as clusters of galaxies and galactic supernova remnants with a single pointing in the soft X-ray band from 0.4 to 12 keV. HXI employs the hybrid sensors consisting of four layers of double-sided silicon strip detectors and a single layer of cadmium telluride double-sided strip detector covering the energy band from 5 to 80 keV. After the successful launch of Hitomi on February 17th, 2016 and the subsequent start up of all the instruments, imaging performance of both imagers are verified as expected from the ground calibration tests. The position of the active galactic nucleus of the central galaxy NGC1275 in the Perseus cluster is precisely seen by SXI, while the positional difference of line-of-sight velocity dispersion of the hot intracluster medium is measured inside by SXS. From the observation of Crab nebula, we obtain the on-pulse hard X-ray image with HXI as well as the time-averaged image in which the torus of the pulsar wind nebula can be seen. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01689002
Volume :
873
Database :
Academic Search Index
Journal :
Nuclear Instruments & Methods in Physics Research Section A
Publication Type :
Academic Journal
Accession number :
125921102
Full Text :
https://doi.org/10.1016/j.nima.2017.02.023