Back to Search Start Over

Constraining Polarized Foregrounds for EoR Experiments. II. Polarization Leakage Simulations in the Avoidance Scheme.

Authors :
C. D. Nunhokee
G. Foster
T. L. Grobler
G. Bernardi
S. A. Kohn
J. E. Aguirre
J. Z. E. Martinot
N. Thyagarajan
J. S. Dillon
A. R. Parsons
Source :
Astrophysical Journal. 10/10/2017, Vol. 848 Issue 1, p1-1. 1p.
Publication Year :
2017

Abstract

A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Array to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc−1 can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0004637X
Volume :
848
Issue :
1
Database :
Academic Search Index
Journal :
Astrophysical Journal
Publication Type :
Academic Journal
Accession number :
125682673
Full Text :
https://doi.org/10.3847/1538-4357/aa8b73