Back to Search Start Over

Implications of tidally-varying bed stress and intermittent estuarine stratification on fine-sediment dynamics through the Mekong’s tidal river to estuarine reach.

Authors :
McLachlan, R.L.
Ogston, A.S.
Allison, M.A.
Source :
Continental Shelf Research. Sep2017, Vol. 147, p27-37. 11p.
Publication Year :
2017

Abstract

River gauging stations are often located upriver of tidal propagation where sediment transport processes and storage are impacted by widely varying ratios of marine to freshwater influence. These impacts are not yet thoroughly understood. Therefore, sediment fluxes measured at these stations may not be suitable for predicting changes to coastal morphology. To characterize sediment transport dynamics in this understudied zone, flow velocity, salinity, and suspended-sediment properties (concentration, size, and settling velocity) were measured within the tidal Sông Hậu distributary of the lower Mekong River, Vietnam. Fine-sediment aggregation, settling, and trapping rates were promoted by seasonal and tidal fluctuations in near-bed shear stress as well as the intermittent presence of a salt wedge and estuary turbidity maximum. Beginning in the tidal river, fine-grained particles were aggregated in freshwater. Then, in the interface zone between the tidal river and estuary, impeded near-bed shear stress and particle flux convergence promoted settling and trapping. Finally, in the estuary, sediment retention was further encouraged by stratification and estuarine circulation which protected the bed against particle resuspension and enhanced particle aggregation. These patterns promote mud export (~1.7 t s −1 ) from the entire study area in the high-discharge season when fluvial processes dominate and mud import (~0.25 t s −1 ) into the estuary and interface zone in the low-discharge season when estuarine processes dominate. Within the lower region of the distributaries, morphological change in the form of channel abandonment was found to be promoted within minor distributaries by feedbacks between channel depth, vertical mixing, and aggregate trapping. In effect, this field study sheds light on the sediment trapping capabilities of the tidal river – estuary interface zone, a relatively understudied region upstream of where traditional concepts place sites of deposition, and predicts how fine-sediment dynamics and morphology of large tropical deltas such as the Mekong will respond to changing fluvial and marine influences in the future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02784343
Volume :
147
Database :
Academic Search Index
Journal :
Continental Shelf Research
Publication Type :
Academic Journal
Accession number :
125374651
Full Text :
https://doi.org/10.1016/j.csr.2017.07.014